
PRACTICAL SOFTWARE™

Pr
actical XFCNs:
Free HyperCard Utilities
By Ari Halberstadt

ABSTRACT

Information common to several general purpose external functions for HyperCard
(on the Macintosh): ordered array, binary tree, and a regular expression searcher. A
comprehensive manual and source code in C is included for each program. The
programs are free; for distribution terms see the appropriate sections in this manual.

This manual is intended for people who write scripts for HyperCard.

Copyright © 1990 Ari I. Halberstadt

Permission is granted to make and distribute copies of this manual and the software
it describes provided the copyright notice, this permission notice, and the sections
entitled “Distribution” and “No Warranty” are included exactly as in the original.
This copyright notice also applies to the other manuals in this set: “ArrayList
Manual”, “BinaryTree Manual”, and “Research Manual”. If any changes are made
to this manual you must record them in the section containing the revision history.

This copyright notice and the sections entitled “Distribution”, and “No Warranty”
were adapted from the notices for GNU Emacs, which is published by the Free
Software Foundation, Inc. I have no connection whatsoever with the Free Software
Foundation; they have had nothing to do with these programs. I have simply adapted
their notices. I believe that the FSF will not be upset by my borrowing of their legal
notices, since they support free software.

The programs were developed using THINK C from Symantec. The object code
provided with these programs makes use of libraries distributed as source code with
THINK C. Therefore, portions of the object code are Copyright © 1990 Symantec
Corporation. Symantec's copyright covers only parts of the object code; it does not
apply to any other parts of these programs or their accompanying manuals.

Table of Contents

Sections

Introduction

Installation

Using the programs
Syntax descriptions
Common functions
Errors
HyperTalk global variables

About the source code
They're really PROC resources
Source code organization
Compiling
Compile options
Special assumptions and comments
Testing
Porting to MPW

Resources
The TABL resources
Solving resource conflicts

Version information

Requirements

Distribution
Distribution
Public license

Copying policies
No warranty

Appendix A. Bibliography

Appendix B. About the author

Appendix C. Revision history

Tables
Table 1. Data types
Table 2. Errors
Table 3. Resources used by ErrorString
Table 4. Resources used by ErrorName
Table 5. HyperTalk global variables
Table 6. Alternative numbering of map resources
Table 7. Revision history

Scripts
Script 1. ReportError

Script 2. Using ErrorName

Introduction

This file describes features that are common to at least three external functions
(XFCNs) which I have written for HyperCard. The external functions are: ArrayList,
an implementation of an ordered list stored as an array; BinaryTree, an
implementation of all basic operations on a binary tree; and Research, a regular
expression searcher, with numerous options to modify its behavior. Each of these
external functions is free and is distributed with its source code in C. The programs
are not, however, in the public domain, and there are some restrictions on their
distribution which are described in the appropriate sections in this manual.

Each program has its own comprehensive manual, which you should read for details.
This manual was written so that I would not repeat the same things such as
installation details and error recovery in each of the manuals.

I would like to thank Carol S. and Jerome Halberstadt for their helpful suggestions.

Installation

To install the programs you must copy several resources into your stack using
ResEdit1 or a resource copier XFCN. These resources consist of the executable
programs, and other resources which contain data needed by the programs. A list of
the resources needed by each program is given in an appendix accompanying the
manual for the appropriate program.

All of the resources are contained in the demonstration stack supplied with the
programs. To install a specific program, copy the resources listed in its manual into
your stack.

During installation, there is a slight chance that other resources already installed in a
stack have the same ID as one or more of the resources used by these programs. If
this problem occurs, please read the section in this manual on solving resource ID
conflicts before proceeding with the installation (you will need a program such as
ResEdit to fix resource ID conflicts).

1ResEdit is an application available from Apple for editing resources.

Using the programs

Assuming you have successfully installed the programs into your stacks, this section
describes some features common to using each of the programs.

Each program may execute different internal functions depending on the parameters
supplied to the XFCN. A typical way to call one of these XFCNs is,

get btree(function, parameters)

In addition, each program implements several standard functions, each of which is
briefly described below (the precise way to call these functions and the data they
return should still be looked up in the relevant manual).

Syntax descriptions

The manual for each program gives complete descriptions of the functions it
implements. The syntax descriptions for the functions use the following typographic
conventions2. Words or phrases in typewriter type are to be typed to the computer
literally, exactly as shown. Words in italic type describe general elements, not
specific names — you must substitute the actual instances. Square ([]) brackets
enclose optional elements that may be included if you need them. (Don't type the
square brackets.)

Some function descriptions have been simplified so as to avoid excessive detail
about the internal operation of the program. The program may in fact use more
efficient algorithms for some operations than those described.

Return types

Each function description is preceded by a word indicating the type of data that the
function returns. This word is purely for your information and should not be entered
in HyperTalk scripts. Some functions may act as procedures, returning the empty
string. The following table lists the basic data types passed to and returned from the
programs.

Table 1. Data types

Type Description

Boolean The string "true" or "false".
error An error code. Value is empty to indicate no error, otherwise it

2Adapted from “HyperCard Script Language Guide: The HyperTalk Language”, Addison-Wesley (1988).

is either an integer or an error name. Error codes are described in more detail later in
this manual.

separator A single character used to delimit substrings. Separator characters
always match exactly; that is, comparisons between a separator
character and another character always take the capitalization of letters
into account (for instance, lower case a is not considered the same as
upper case A). HyperCard's item separator, which is a comma, is
usually the default separator used when no other separator is specified.

string Any HyperTalk string.
empty Nothing is returned.

Common functions

This section describes functions which are provided by most of the programs. You
should consult the manual for the relevant program for more precise details about
these functions.

"!"

Syntax
string alist("!")
string btree("!")
string research("!")
string errorstring("!")

string errorname("!")
Description

Returns a string describing the version of the program, along with a copyright
statement, the name of the author, and the date and time of compilation. If two
copies of the same program have the same version numbers, but different times of
compilation, then the one with the more recent compilation time should be used.

"?"

Syntax
string alist("?")
string btree("?")
string research("?")
string errorstring("?")

string errorname("?")

Description

Returns a string giving a brief summary of the ways to call the XFCN. The string
may extend to more than one line, so it may be helpful to display it in a scrolling
field. In the case of the more complicated XFCNs, the string may also simply refer
you to the manuals.

Error

Syntax
string alist(error)
string btree(error)

string research(error)
Description

Returns the error code of the last error that occurred, or empty if the last function
executed successfully. Should be called after each call to the program that does not
return an error code. You can use the ErrorString and ErrorName XFCNs (described
later in this manual) to get a string describing the error that occurred.

Notes

This function may, in a future release, be expanded to provide the syntax and a brief
description for each individual command. For instance, when called as

btree("?", inorder)

a string describing the Inorder function of the BinaryTree XFCN would be
returned.

Errors

Every function executed from the programs, except for the Error function itself, may
encounter an error. There are many things that may cause an error. For instance, you
may call the program incorrectly, or the program may run out of memory, or the
program may be unable to locate a resource. It is always a good idea to check for
errors. This helps make your scripts more robust and ensures that they will always
do something reasonable and helpful.

Two external functions are provided for accessing the error codes: ErrorName and
ErrorString. The following sections show how to use these external functions to
check for and recover from errors.

Checking for errors

Each program has a special function called Error for getting at the last error that the
program encountered. This function returns an integer, called an error code,
which identifies the error that occurred. If no error occurred then the Error function
returns the result empty. A typical way to call one of the programs is:
get alist(new, array) -- create a new array
if (alist(error) <> empty) then reportError alist(error)

In this example, we call ArrayList, and then check if an error occurred. We report
any errors to the user and exit (the handler reportError is shown below). Some
functions return an error code, so we don't even have to use the Error function. The
function New of ArrayList returns an error code, or empty when it's successful, so
that we can rewrite the previous example to be more efficient:
get alist(new, array)
if (it <> empty) then reportError it

This second version saves us the overhead of an extra call to ArrayList.

Reporting errors

The error codes returned by the programs are integers. Negative error codes are
returned when a Macintosh system call fails3, and positive error codes are returned
when a part of the program itself fails. The ErrorString XFCN is used to get a short

3This "fact" was determined empirically, based on experience programming the Macintosh. I do not recall
actually seeing such a promise from Apple.

description of an error, which can then be used to explain to the user what went
wrong. For instance, the following script will report errors

to the user.

Script 1. ReportError
on reportError errorCode

if (errorCode <> empty) then
answer "Error:" && ErrorString(errorCode)
exit to HyperCard

end if
end reportError

Notice that ErrorString only contains strings describing errors produced by the other
programs in this set (eg, ArrayList, BinaryTree, Research). These programs may also
encounter errors caused by the failure of a Macintosh system call. If the error code is
negative, then it refers to a Macintosh system error, and ErrorString will simply
return the error code itself, instead of a descriptive string. For instance, the
command
get ErrorString(-108)

places the string "-108" into the variable it. (This is the error code returned when the
Macintosh has run out of memory.)

The strings returned by ErrorString are summarized in a table in a following section.

Checking for specific errors

Occasionally you may need to know exactly which error occurred, so that your
script can handle certain errors in specific ways. The programs return errors in the
form of integers. However, when referring to a specific error, you should not use the
integer value, rather you should refer to the error's name. An error name is a
single unique word which identifies the error. You can convert an error number into
an error name using the ErrorName XFCN. For instance,
ErrorName(6) -- returns "ERR_BASIC_HYPERCARD"

The ErrorString XFCN will also convert error names into descriptive strings, so you
can call ErrorString even if you've only got the error's name. For instance:
ErrorString(6) -- returns "HyperCard error"
ErrorString(ERR_BASIC_HYPERCARD) -- returns "HyperCard error"
ErrorString(ErrorName(6)) -- returns "HyperCard error"

If ErrorName doesn't recognize the error number, then it returns whatever its
parameter is. For instance,
ErrorName(ERR_BASIC_HYPERCARD) --returns "ERR_BASIC_HYPERCARD"
ErrorName(-108) -- returns -108
ErrorName("Return Me") -- returns "Return Me"

Notice that ErrorName only contains names of errors produced by the other
programs in this set (e.g., ArrayList, BinaryTree, Research). These programs may
also encounter errors caused by the failure of a Macintosh system call. If the error
code is negative, then it refers to a Macintosh system error, and ErrorName will
simply return the error code itself, instead of its name. For instance, the command
get ErrorName(-108)

places the string "-108" into the HyperTalk variable it. (This is the error code
returned when the Macintosh has run out of memory.) You should always use
ErrorName to get the error's name; if ErrorName didn't recognize the error, then you
can refer to the actual error number, otherwise you should refer to the error's name.

As an example, suppose you use ArrayList to maintain lists created by the user of
your stack. If the user were to attempt to create a new list, but the list already
existed, you might want to display a dialog box asking whether to replace the old list
with the new list. The following script shows how you could do this.

Script 2. Using ErrorName
on newList listName

get alist(new, listName) -- create list
if (it <> empty) then -- couldn't create it

get ErrorName(it) -- get name of error
if (it = "ERR_LTABLE_EXISTS") then --check if list

exists
-- query user
answer "Replace existing list " &¬
quote & listName & quote & "?" with "Yes" or "No"
if (it = "No" or it = empty) then exit newList
-- dispose of old list and create new list
get alist(dispose, listName) -- dispose of list
if (it <> empty) then reportError it
get alist(new, listName) -- create list
if (it <> empty) then reportError it

end if
end if

end newList

Error names and descriptions

The following table lists the names and the descriptions of the errors. You can access
the names of the errors using the ErrorName XFCN, and the descriptions of the
errors using the ErrorString XFCN.

Table 2. Errors

Returned By Name Description

All Programs ERR_BASIC_UNKNOWN "Unknown error"
ERR_BASIC_PROGRAM "Program error"
ERR_BASIC_ROMVER "Wrong ROM"
ERR_BASIC_SYSVER "Wrong system"
ERR_BASIC_HCVER "Wrong HyperCard"
ERR_BASIC_HYPERCARD "HyperCard error"
ERR_BASIC_ARGCNT "Parameter count"
ERR_BASIC_USAGE "Parameter usage"
ERR_BASIC_COMMAND "Unknown command"
ERR_BASIC_UNIMPLEMENTED "Unimplemented command"
ERR_BASIC_CANCELED "Operation was canceled"

ArrayList ERR_ARRAY_INDEX "Subscript out of bounds"
ERR_ARRAY_NEGCNT "Negative count"
ERR_ARRAY_LIST "Unused error code"
ERR_ARRAY_EMPTY "Empty array"
ERR_ARRAY_ATTR "Unknown attribute"
ERR_ARRAY_EXISTS "Array already exists"
ERR_ARRAY_NOT_EXISTS "Array doesn't exist"
ERR_ARRAY_SUBSCRIPT "Illegal subscript"
ERR_ARRAY_CHKSUM "ArrayList checksum error"

Research ERR_PAT_EOF "Pattern ended unexpectedly"
ERR_PAT_LITERAL "Missing literal in pattern"
ERR_PAT_DIGIT "Missing digit in pattern"
ERR_PAT_ENDTAG "Missing '\)' in pattern"
ERR_PAT_ECCL "Missing ']' in pattern"
ERR_PAT_EGROUP "Missing ')' in pattern"
ERR_PAT_MAXTAG "Too many tags in pattern"
ERR_PAT_SIZE "Pattern is too big"
ERR_PAT_ENDCLOSURE "Missing '}' in pattern"
ERR_PAT_MAXMIN "Closure's min is greater than max"
ERR_PAT_MATCH "Pattern is too complex for input"
ERR_RESEARCH_OPTION "Unknown option"
ERR_RESEARCH_CHKSUM "Research checksum error"

BinaryTree ERR_TREE_EXISTS "Key already exists"
ERR_TREE_NOTFOUND "Key doesn't exist"
ERR_TREE_ATTR "Unknown attribute"
ERR_TREE_EMPTYKEY "Empty key"

ERR_TREE_EXISTS "Tree already exists"
ERR_TREE_NOT_EXISTS "Tree doesn't exist"
ERR_TREE_CHKSUM "BinaryTree checksum error"

Resources used by ErrorString and ErrorName

The following table lists the resources required by the ErrorString XFCN. These
resources must be installed in your stack for ErrorString to work.

Table 3. Resources used by ErrorString

Type Name Description

XFCN ErrorString The ErrorString XFCN.
TABL ErrorString:Strings Descriptions of the

errors.
STR# ErrorString:ResourceMap List of resources

used by ErrorString.
STR# ErrorString:Info Version and usage

information for ErrorString.

The following table lists the resources required by the ErrorName XFCN. These
resources must be installed in your stack for ErrorName to work.

Table 4. Resources used by ErrorName

Type Name Description

XFCN ErrorName The ErrorName XFCN.
TABL ErrorName:Names* Names of the errors.
STR# ErrorName:ResourceMap List of resources

used by ErrorName.
STR# ErrorName:Info Version and usage

information for ErrorName.

* Resource is also used by ErrorString.

HyperTalk global variables

This section lists the global variables used by the programs. This information is
provided so that you do not use the same global variables in your scripts, and for
documentation purposes for the author of these programs.

Note: You should not access these global variables since they may cease to exist in
future versions. Also, modifying the contents of these variables may lead to
disastrous results (such as system bombs).

Declaring

Some older versions of HyperCard seem to require that global variables be declared
somewhere in a script before the variables can be used. If you're using one of those
versions [earlier than 1.2(?)], then you should include lines like the following ones
in an openStack handler:
global _ArrayListGlobal
global _BinaryTreeGlobal
global _ResearchGlobal

You should not refer to these global variables anywhere else in your scripts.

Globals

The following table lists the global variables needed by the programs.

Table 5. HyperTalk global variables

Variable Description

_ArrayListGlobal Handle to data used by ArrayList
_BinaryTreeGlobal Handle to data used by BinaryTree
_ResearchGlobal Handle to data used by Research

About the source code

This section is intended for programmers interested in understanding and/or
modifying the programs. This section contains general information about the
programs; for more specific information read the appropriate section in each
program's manual.

You should know how to use the C programming language (in which I wrote the
programs) on the Macintosh, and a knowledge of how to write XFCNs will be
helpful. Though the programs were written using THINK C 4.0, it should be fairly
straightforward to adapt them for other development environments, and I've
included a section that will be helpful for those porting to MPW C. When viewing
the source code you should use 3 spaces per tab.

The code for these programs was surprisingly large when I first compiled them.
Evidently, my passion for highly structured code and strict error recovery results in
programs which are quite large. I would, however, like to think that my programs
are more understandable, maintainable, and correct than less strict programs.
Anyway, most inefficiencies in my code should eventually be removed by better
optimizing compilers and size problems should become insignificant as computer
memories grow larger and cheaper. I remember reading in one of my textbooks that
a programmer should not fiddle with code to make it faster, rather, a better algorithm
should be used (though I admit I did, at times, "fiddle" in order to get
improvements...).

They're really PROC resources

Since speed was such a crucial consideration, and knowing that the programs may
be called many times, I had to figure out a way to limit the time HyperCard spends
loading the programs into memory. As you probably know, HyperCard makes a
complete copy of an XFCN resource before jumping to it. The solution was to write
a short XFCN whose sole purpose is to load a PROC resource, lock it in memory,
jump to it, and then unlock the PROC resource and return. The PROC resource is
where the true "XFCN" is. I always refer to the programs as XFCNs, and not as
PROC resources, since I prefer the terminology and because the functionality is
nearly identical4.

4Actually, there is a slight difference. If the stack containing the PROC resource is closed while it is executing
then the currently executing code may be lost, resulting in indeterminate behavior.

Source code organization

Folder organization

Source code which is used only by a single program is contained in a folder with a
name such as "TreePROC" for the BinaryTree program. Source code which is shared
by all programs is contained in the folder named "Libraries". The libraries folder
contains a folder for each individual library, which in turn contains the source file
and a header file containing definitions for that library. Some of these libraries are
compiled into a single library, called "Libs-A4.π", which is loaded into each of the
programs. Since the full ANSI library is not needed, this library uses the code from
only a few of the source files for the ANSI library, thus resulting in smaller projects
and faster compilation.

Projects

Each program is composed of two projects5. One is the project for the PROC
resource, and the second is the project for the small XFCN. Both must be compiled
in order to run the program. Notice that the XFCN project does not include THINK
C's MacTraps library. This results in a much smaller program, and is possible since I
wrote the functions for loading the PROC resource in assembly language.

Compiling

To compile the projects you must follow several steps:

1. You should move the "Libraries" folder into the same folder as the THINK C
application. This will allow all of the projects to access the files in the libraries.

2. To speed up compilation during development, I defined my own precompiled
header file, instead of using the larger MacHeaders file supplied with THINK C.
Therefore, every ".c" source code file starts with the line "#include
<MyHeaders>". The file "MyHeaders.c" contains the include statements, which,
when compiled using the precompile command, will yield the file "MyHeaders".
You should precompile this file and place it in the THINK C folder before
compiling any of the programs.

3. Once the file "MyHeaders" is ready, build the project "Libs-A4.π" as a code
resource. The project should have access to the source files for the ANSI library
provided with THINK C. Ignore any link errors, since this project is only being
used as a library.

4. Now, compile the project for the XFCN part of the program (it will be named
"TreeXFCN.π", or something similar). Finally, compile the project for the PROC
part of the program (it will be named "TreePROC.π", or something similar).

5THINK C uses special files called "projects" to keep track of the source files used in a program.

Profile option

Be careful if compiling with the profile option. The assembly language routines that
I wrote fail due to the extra profiling code inserted by the THINK C compiler.
Therefore, compile files containing assembly language with the profile option turned
off, then turn the option on and compile all the other files. Alternately, you can
simply turn assembly language off by setting the appropriate flag in the
configuration header file ("stdconfig.h"). I don't know what effect the profile option
would have in MPW.

Compile options

Several preprocessor symbols are assigned default values in "stdconfig.h"; in
addition, every project has a file named "privateconfig.h" which can be used to
override any of the defaults. Following are descriptions of what some of the flags
do.

DEBUG

If compiled with DEBUG defined as 1 then some debugging code will become
active. Most important, if the shift key is held down when execution of a program is
starting then the debugger trap is executed; you should have a low level debugger
such as MacsBug or TMON if you hold down the shift key.

ASSERTIONS

If ASSERTIONS is defined as 1 then assertions will be activated, which aids greatly
in the debugging process. Also, some operations will be implemented as functions
instead of equivalent macro definitions. The effect of this is to slow down the
programs and to increase their size by several thousand bytes. ArrayList got so big I
had to compile it in two segments to test it using assertions.

CUSTOM_HEADER

THINK C versions 3.0 and up allow the use of a header file other than the default
one for code resources. When this option is checked, the THINK C compiler does
not insert glue code at the head of the code resource, and instead places the first
function in the file with the main routine at the head of the code resource. You must
define CUSTOM_HEADER as 1 if this option is used, and you should modify the
special header function in "codelib.c". The custom header option will modify the
way the program gets a handle to the actual PROC resource. Note: This feature
has not been tested.

Special assumptions and comments

Moving memory

I have assumed that calls to standard C library string functions such as strcpy, strcat,
and strcmp and also calls to the functions PtoCstr and CtoPstr and to some of the
functions in my own string library (such as substrlen and substrcmp) do not move or
purge memory. Therefore, I do not lock handles before dereferencing and passing
them as parameters to these functions. This would only be a problem if the string

library is moved into a segment other than the main segment (multiple segment code
resources are possible in THINK C). When the other segment is loaded into memory
the heap may be rearranged. Therefore, always compile the strings library,
MacTraps, and the files "strlib.c" and "strasm.c" in the main segment (since the
string library is compiled as part of the "Libs-A4.π" project, simply put the Libs-A4
project in the main segment).

Moving object code

The programs are stored in code resources that are loaded into memory while
executing and which may be purged from memory while inactive. This means that
each code resource may reside at any address in memory, and that the addresses of
functions may change from one execution of a code resource to the next. Therefore,
any reference to such addresses must be reinitialized each time a code resource is
executed. You will notice that there are functions with names like "str_tupdate"
(from BinaryTree), and "str_lupdate" (from ArrayList) which do this updating for
each data structure.

32-bit

As noted in the requirements section, this program should work in 32-bit clean
environments. However, I have written a function called validhandle which helps
verify that handles are not corrupt. This function increases the reliability of the
software and helps detect bugs. In fact, I think it is one of the most useful functions
I've written for debugging programs on the Macintosh. Unfortunately, validhandle
uses tests based upon information found in Inside Macintosh, volume II, which may
not be valid for new system software. In fact, Apple warns that programmers should
not access a handle's header. Therefore, this function may require modification for
32-bit clean environments. (The function validhandle is only used while debugging.)

Testing

Simulating HyperCard

I have included several libraries of code that will be useful for testing changes to any
of the XFCNs. These libraries—by simulating a subset of the HyperCard
environment—allow you to run the XFCN as an application, thus greatly
simplifying debugging. The file "hypersimlib.c" currently implements global
variables and translation of Boolean strings. The file "test.c" is a generic testing
utility which reads in commands and constructs parameter blocks from them.

Test projects

I have included at least one project (called "TreeTest.π") which can be used to test
one of the XFCNs. Other projects can be constructed in a similar manner to test any
of the other XFCNs. Notice that, in order to maintain the global variables,
"hypersimlib.c" makes use of the library "listlib", so you must include the file
"listlib.c" in all test projects. You should also set the preprocessor symbol
"APPLICATION" to 1, and the symbol "CODE_RESOURCE" to 0 (in the file
"privateconfig.h" for the test project). To make a test project for the Research
XFCN, you will have to simulate the EvalExpr call-back, perhaps by returning
dummy values.

These test projects are provided as an extra bonus, and I do not intend to expend
much effort to maintain them. I usually bring them up to date only when I make
extensive changes to one of the XFCNs; in the interim, they may develop
inconsistencies. Still, these notes and the comments in the relevant files should be
enough to get you started.

Porting to MPW

THINK C and MPW C are quite similar. I have not compiled the programs with
MPW, but expect porting them to MPW to be straightforward. You should define
MPW as 1 and THINK_C as 0 before compiling (see the file "stdconfig.h").
Following are the main points on which I have found THINK C and MPW to differ:

• THINK C organizes files in projects (those files with the ".π" suffix). In MPW
you must create a Makefile describing all the files.

• The names of the header files for using the Toolbox differ. If you're using
THINK C version 3.0 or newer you can completely avoid the use of the
Macintosh interface header files by using a precompiled header. For MPW, you'll
have to explicitly specify which files to include.

• All of the programs share a standard configuration file called "stdconfig.h". In
addition, each program requires its own private configuration file, called
"privateconfig.h". Each THINK C project therefore has a special folder which is
the same as the name of the project, but surrounded with parenthesis. This folder
shields its contents, so that only one project can access them. For instance, the
project "TreePROC.π" uses the folder "(TreePROC.π)", and one version of the
file "privateconfig.h" resides in this folder. MPW doesn't use THINK C's method
of shielding folders, but instead uses full pathnames. You'll have to specify a
search path to the appropriate "privateconfig.h" file, perhaps by changing folders
MPW searches in for included files.

• A few routines were written in assembly language to speed execution. You'll
have to figure out how to use assembly language with MPW, or you can define
the preprocessor symbol "ASSEMBLY" as 0 (in the file "stdconfig.h").

• THINK C inserts special glue code at the start of a code resource that jumps to
the main routine, which may be located anywhere in the program. I believe
MPW requires that the main routine be the first function encountered by the

linker. The file "codelib.c" contains the main function for these programs, and
must be modified for MPW.

• Though THINK C versions 3.0 and later support global variables in code
resources I have made very little use of this feature. The file "codelib.c", which
is used to initialize the environment for the code resource, contains a variable
used to store a jump-buffer, which allows the programs to abort if they encounter
an error; this variable could be removed with no loss in functionality. The
functions "RememberA4()", "SetUpA4()" and "RestoreA4()" are used by
THINK C to maintain global variables in a code resource. Finally, several files
contain string constants, and I'm not sure if MPW will allow them. The solution
to this latter problem is to move the strings into a resource.

If you successfully port any of the programs to MPW, I would advise marking the
differences with #ifdef statements. I would appreciate receiving news of a successful
port so that I may include it in future releases of this software.

Resources

This section describes special resources, building the resources, and solving
resource conflicts when installing the programs into a stack.

The TABL resources

The programs use a new type of resource that I defined, called 'TABL', which is
short for "Table". The resource is used to look up numbers assigned to a certain
string, or to look up a string assigned to a certain number. The routines for accessing
this resource type are in "lookuptabl.c" and for building the resource in "buildtabl.c".

Note: The capitalization of letters is ignored when a string is searched for and
when the entries in the table are sorted by their strings (letters with diacritics are still
compared using regular ASCII ordering).

Format

The first two bytes of the resource give the number of strings, the next two bytes
give the width of each text string (must be a multiple of two), and then there are two
bytes of flags. The following data are the entries in the table; each entry is preceded
by the number of a string, which may be any number, and this is followed by a string
padded to the uniform width with zeros. According to the settings of the flag bytes,
the table is sorted either by the numbers of the strings or by the strings themselves,
so that data may be located efficiently using binary searches.

The resource consists of a header:
2 bytes Number of entries in table
2 bytes Width of each string in table; must be an even number

2 bytes Flags

This header is followed by the entries in the table:
2 bytes String number (can be any value)

Width bytes String padded to width bytes with zeros

Building the TABL resources

The TABL resources are used for looking up such things as the command strings for
the XFCNs and then translating these strings into an internal representation. To build
these resources, and to keep the resources consistent with the programs, I had to
create a little utility program, called "MakeRsrcs.π".

Each XFCN has its own data file, which contains data for the TABL resources that
XFCN uses. For instance, the BinaryTree XFCN has a file called
"BinaryTreeRsrcs.c". If a command is added or is changed in any of the XFCNs,
then you must update the appropriate data files for the program, and then compile
and run the MakeRsrcs project. MakeRsrcs will build the TABL resources into the
resource file of each program it knows about. You can then compile the program,
and it will incorporate the new resources. (The project file "MakeRsrcs.π" should be
moved out of its folder, and should be higher up in the directory heirarchy, so that it
will have access to the files of the other programs.)

Solving resource conflicts

This section explains how to solve problems caused by a conflict between the
resources used by the programs and resources that already exist in a stack. This
section assumes some understanding of how the Macintosh handles resources. While
reading this section it is a good idea to look at the appendix that gives a list of the
resources for the program of interest.

Resources

Every resource on the Macintosh has a type, such as XFCN, STR#, or TEXT, which
specifies the type of data stored in the resource. An XFCN resource stores

executable code, a STR# resource stores a list of strings, and a TEXT resource stores
plain text. A resource is referred to either by a name or by a number (the number is
known as the resource's ID). All resources of a

specific type must have a unique ID, while a unique name is, while not required, a
good thing to have. For a combination of reasons (including speed) my programs
refer to all resources they need by ID only. HyperCard, however, loads an XFCN by
referring to its name, and not its ID. This is necessary since HyperCard doesn't know
the IDs of XFCN resources installed in a stack.

Note: Though the resources are installed in a stack, they may still conflict with
resources used by the HyperCard application. Therefore, you must be careful that
the resource numbers you assign do not conflict with any resources of the same type
used by HyperCard.

Loading resources

Most of the resources are loaded by their names, so that it doesn't matter what ID
they have. The only exception to this rule are several special resources which are
used as maps to the other resources used by the programs. The map resources are
of type STR#, and contain the types and the names of the resources used by the
programs. These resources must have the same ID as the PROC resource to which
they belong. Thus, if for some reason you must change the ID of a PROC resource,
then you must also remember to change the ID of its map resource.

The following table shows the map resources that must have the same ID as their
corresponding PROC resource. The table also gives examples of alternative
numberings for the resources (remember to renumber both the PROC resource and
the map resource).

Table 6. Alternative numbering of map resources

PROC name Map name ID Alternative ID

ArrayList ArrayList:ResourceMap 2300 3141
Research Research:ResourceMap 2400 5926
BinaryTree BinaryTree:ResourceMap 2500 5358

If you've changed any resource IDs. When the XFCNs are first
executed, they search for all of the resources they need, and then store the resources'
IDs, so that subsequent loading of the resources will be faster. The list of resource to
search for is contained in the special map resource. If you've changed any of the
resources' IDs, then you'll need to quit HyperCard and then restart HyperCard. This
completely erases any data the XFCNs might have stored about the locations of the
resources. [Forcing people to quit HyperCard is somewhat annoying, and I will
eventually figure out a good way to avoid this problem.]

Loading the PROC resources

Each program is actually stored as a simple XFCN resource that is called from
HyperCard and which then proceeds to load and execute a resource of type PROC.
The PROC resource is where the executable program resides. The small XFCN
loads the PROC resource using a hard-coded resource name. If the resource can't be
found then the XFCN exits without doing anything.

Changing resource names

You will probably never need to do this. If you must, then you may have to
recompile some of the programs. Specifically, if you rename:

• any of the PROC resources then you will have to recompile its corresponding
XFCN;

• the resource maps of the ErrorName or ErrorString XFCNs, then you willl have
to recompile either the ErrorName or the ErrorString XFCNs (depending on
which ones resources you changed).

Before compiling, you will have to change the names of the affected resources in the
appropriate source code files. You should also update the map resources to reflect
any changes in the resource names.

Version information

The manuals for each of the programs provide detailed descriptions of any changes
from earlier versions.

Experimental version

This manual describes version 0.9 of the programs. The version is numbered 0.9 to
indicate that it is an experimental version. I have used the programs somewhat in my
own stacks and have verified to my satisfaction that they are correct and that there
are no bugs. However, even the best programmer may overlook things. It is very
likely that there are some undetected bugs that I hope will be discovered and
corrected before the first "real" version which will be numbered 1.0.

The features in this version are somewhat tentative, and I may add or remove
features as I see fit prior to version 1.0. With versions 1.0 and up I intend (though I
don't guarantee) to maintain backward compatibility with lower versions. Thus,
scripts written for version 0.9 may have to be revised slightly to work with version
1.0. Scripts written for version 1.0 should work with all subsequent versions.

Your comments

If you have any comments regarding anything about these programs please don't
hesitate to contact me. I'll especially appreciate reports of bugs (though I hope none
are found). If you make enhancements to the basic code please send me a note, or a
copy of the modified source code, describing what you did, and I may include the
change in future releases (with acknowledgment). If you just want to see a new
feature added, also let me know, and I may add it.

Requirements

Minimal requirements

The programs have some minimal requirements for hardware and software. The
requirements are:

• A Macintosh Plus or any model with equivalent 128K (or later) ROMs installed.

• System 4.2 or later (the programs may work with earlier system software but this
has not been tested).

• Any version of HyperCard. However, some versions of HyperCard earlier than
1.2 may require that global variables be declared before they are used. Since the
programs use a few global variables to store information between invocations
you must declare these variables in a script, preferably in the openStack
handler. See the section in this manual about the global variables for more
details.

32-bit and A/UX

Use caution when operating on 32-bit clean environments such as A/UX since the
programs have not been tested as being 32-bit clean. I have attempted to adhere to
all of Apple's guidelines for writing 32-bit clean code, so there should be very few, if
any, problems when used under such an environment. I can not, however, be sure
that the programs will execute correctly.

Distribution

This section describes the terms under which these programs may be freely
distributed.

Distribution

You may give out free copies of this software subject to the fairly unrestrictive
conditions in the following section. The only thing I ask in return for your use of this
software is that you send me a postcard, but this is only a request, not a condition for
use.

Public license

Note: In this and the following sections titled "Copying Policies" and "No
Warranty" the terms "this software" and "the software" refer to the source code,
compiled object code, and manuals for the programs "ArrayList XFCN",
"BinaryTree XFCN", "Research XFCN", "ErrorString XFCN", and "ErrorName
XFCN".

I want to make sure that you have the right to give away copies of this software, that
you receive source code or else can get it if you want it, that you can change the
software or use pieces of it in new free programs, and that you know you can do
these things. To make sure that everyone has such rights, I have to forbid you to
deprive anyone else of these rights. For example, if you distribute copies of the
software, you must give the recipients all the rights that you have. You must make
sure that they receive or can get the source code. And you must tell them their rights
(by including this notice).

Also, for my own protection, I must ensure that everyone finds out that there is no
warranty for this software. Finally, if any of the software is modified by someone
else and passed on, I want its recipients to know that what they have is not what I
distributed, so that any problems introduced by others will not reflect on my
reputation (each file contains a description of how you should note any changes
made to the file).

Therefore I (Ari I. Halberstadt) make the following terms which say what you must
do to be allowed to distribute or change the software.

Copying policies

1. You may copy and distribute verbatim copies of this software as you receive it,
in any medium, provided that you conspicuously and appropriately publish on
each file a valid copyright notice “Copyright © 1990 Ari I. Halberstadt”; keep
intact the notices on all files that refer to this License Agreement; and give any
other recipients of the software a copy of this License Agreement. You may
charge a distribution fee for the physical act of transferring a copy.

2. You may modify your copy or copies of the software or any portion of it, and
copy and distribute such modifications under the terms of Paragraph 1 above,
provided that you also do the following:

• cause the modified files to carry prominent notices stating who last changed
such files and the date of any change (each source code file contains a header
indicating how this is to be done); and

• cause the whole of any work that you distribute or publish, that in whole or
in part contains or is a derivative of the software or any part thereof, to be
licensed at no charge to all third parties on terms identical to those contained
in this License Agreement (except that you may choose to grant more
extensive warranty protection to some or all third parties, at your option).

• You may charge a distribution fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a fee.

Mere aggregation of other unrelated software with this software (or its
derivative) on a volume of storage or distribution medium does not bring the
other software under the scope of these terms.

3. You may copy and distribute the software (or a portion or derivative of it, under
Paragraph 2) in machine executable form under the terms of Paragraphs 1 and 2
above provided that you also do one of the following:

• accompany it with the complete corresponding machine-readable source
code, and manuals, which must be distributed under the terms of Paragraphs
1 and 2 above; or

• accompany it with the information you received as to where the
corresponding source code and manuals may be obtained.

For an executable file, complete source code means all the source code for all
modules it contains; but, as a special exception, it need not include source code
for modules which are standard libraries that accompany the operating system on
which the executable file runs, or which are part of the development
environment used to write the software.

4. You may not copy, sublicense, distribute or transfer the software except as
expressly provided under this License Agreement. Any attempt otherwise to
copy, sublicense, distribute or transfer the software is void and your rights to use
the software under this License Agreement shall be automatically terminated.
However, parties who have received computer software programs from you with
this License Agreement will not have their licenses terminated so long as such
parties remain in full compliance.

5. If you wish to incorporate parts of the software into other programs whose
distribution conditions are different, please write to the author. This license
agreement is only intended for general distribution, and I will often agree to
different terms.

No warranty

Because this software is licensed free of charge, I provide absolutely no warranty.
Except when otherwise stated in writing, Ari I. Halberstadt and/or other parties
provide this software “as is” without warranty of any kind, either express or implied,
including, but not limited to, the implied warranties of merchantability and fitness
for a particular purpose. The entire risk as to the quality and performance of the
program is with you. Should this software prove defective, you assume the cost of
all necessary servicing, repair or correction.

In no event will Ari I. Halberstadt and/or any other party who may modify and
redistribute this software as permitted above, be liable to you for damages, including
any lost profits, lost monies, or other special, incidental or consequential damages
arising out of the use or inability to use (including but not limited to loss of data or
data being rendered inaccurate or losses sustained by third parties) the software,
even if you have been advised of the possibility of such damages, or for any claim
by any other party.

Appendix A. Bibliography

“HyperCard Script Language Guide: The HyperTalk Language” Addison-Wesley
Publishing Company, 1988. Describes all the features and commands of
HyperTalk, with a basic introduction to writing XCMDs and XFCNs. Don't
expect to see "A real implementation of a spreadsheet better than Excel" here:
this is primarily a reference book for people who want to use HyperCard to its
fullest extent. Far better than any other book I have seen on the subject, this is
the official documentation from Apple.

Henry McGilton and Rachel Morgan, “Introducing the UNIX System”, McGraw-
Hill Book Company, 1983. An introductory text to using the UNIX operating
system, this book was written with the end user in mind, and helped me write
clearer descriptions of regular expressions. The book is somewhat out of date,
which is its main drawback.

Kernighan, W. Brian and Ritchie, Dennis M., “The C Programming Language”,
Prentice-Hall, 1978. This is the first edition of the standard text for programming
in C. Though a somewhat terse and cryptic book, it was the only way to learn C
for several years. Fortunately, there are now a plethora of other books on C to
choose from. I would recommend purchasing the second edition of this text
which has been updated for compatibility with the ANSI (American
National Standards Institute) definition of the C programming language.
This text is commonly referred to as “K&R”, in reference to the authors initials.

Sedgewick, Robert, “Algorithms”, 2nd ed., Addison-Wesley, 1988. A survey of the
most important computer algorithms in use today. It has been used as the
textbook for Dartmouth's introductory algorithms course, which is why I have
this book. It is very useful for finding a good algorithm for some task or another,
and as a starting point for locating better algorithms. Its main drawback is the
use of cryptic names for many of the sample programs and its awful description
of the network flow problem.

“XEROX Publishing Standards: A Manual of Style and Design”, Watson-Guptil
Publications, 1988. The page layout and style used in these manuals is based on
information from this book.

Zanny Whacko and Thumb A Ride, “The Hitchhikers Guide to Computers”, Ursa
Minor Book Company, 2034. By far the most important text ever written about
computers, its main attraction is the words “Don't Panic” which are inscribed on
its cover. Certainly, its admonition regarding UNIX, “mostly harmless”, is the
most useful insight ever provided on this popular yet archaic system.

Appendix B. About the author

The author of these programs may be reached at the following address:
Ari Halberstadt
11B Faxon St., #1
Newton, MA 02158

Tel. (617) 332-0290

If you have any comments about these programs he is eager to receive them. He also
awaits a postcard from your home town.

The author enjoys programming the UNIX operating system, especially BSD4.x,
Bourne Shell/C Shell and other standard UNIX amenities. Programming languages
he uses include C, Objective C, Pascal, and MC68000 assembly. The Macintosh has
consumed much of his time in the past year and a half; knowledge of application
programming, interface design, and fancy XCMDs is firmly lodged in his synapses.
Using MPW, including scripting, and THINK C, are Standard Operating Procedures.

The author's favorite unfinished program is a talking clock on the NeXT computer.
His favorite dream computer is too far off to describe in less than 250 words.
Racquetball and kayaking are probably more enjoyable than just programming.
Dartmouth College is the best college he has attended.

Current computer interests include program specification, algorithm design,
correctness proofs, applications of computers to analysis of biological systems, and
hypothetical user interfaces. Robotics and certain fields in Artificial Intelligence
seem like fascinating fields for future study. The author currently views his main
purpose in life as the acquisition of knowledge and the understanding of the
knowledge acquired.

Appendix C. Revision history

This section is to be used for recording any changes made to this manual. This is
necessary since I do not want inconsistencies or mistakes introduced by others to
reflect on my reputation, and, if the revisions improve this product, then the person
who made the improvements should receive full credit. For consistency, please enter
dates as Year-Month-Day.

Table 7. Revision history

Date Name Comments

90-07-18 Ari Halberstadt This is an example entry
90-07-11 Ari Halberstadt Version 0.9

